Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Med Virol ; 95(3): e28648, 2023 03.
Artículo en Inglés | MEDLINE | ID: covidwho-2261603

RESUMEN

In January 2022, the SARS-CoV-2 Omicron variants initiated major outbreaks and dominated the transmissions in Hong Kong, displacing an earlier outbreak seeded by the Delta variants. To provide insight into the transmission potential of the emerging variants, we aimed to compare the epidemiological characteristics of the Omicron and Delta variants. We analyzed the line-list clinical and contact tracing data of the SARS-CoV-2 confirmed cases in Hong Kong. Transmission pairs were constructed based on the individual contact history. We fitted bias-controlled models to the data to estimate the serial interval, incubation period and infectiousness profile of the two variants. Viral load data were extracted and fitted to the random effect models to investigate the potential risk modifiers for the clinical viral shedding course. Totally 14 401 confirmed cases were reported between January 1 and February 15, 2022. The estimated mean serial interval (4.4 days vs. 5.8 days) and incubation period (3.4 days vs. 3.8 days) were shorter for the Omicron than the Delta variants. A larger proportion of presymptomatic transmission was observed for the Omicron (62%) compared to the Delta variants (48%). The Omicron cases had higher mean viral load over an infection course than the Delta cases, with the elder cases appearing more infectious than the younger cases for both variants. The epidemiological features of Omicron variants were likely an obstacle to contact tracing measures, imposed as a major intervention in settings like Hong Kong. Continuously monitoring the epidemiological feature for any emerging SARS-CoV-2 variants in the future is needed to assist officials in planning measures for COVID-19 control.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Periodo de Incubación de Enfermedades Infecciosas , Brotes de Enfermedades , Convulsiones
2.
Emerg Microbes Infect ; 12(1): e2164218, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-2187798

RESUMEN

Middle East respiratory syndrome coronavirus (MERS-CoV) is enzootic in dromedary camels and causes zoonotic infection and disease in humans. Although over 80% of the global population of infected dromedary camels are found in Africa, zoonotic disease had only been reported in the Arabia Peninsula and travel-associated disease has been reported elsewhere. In this study, genetic diversity and molecular epidemiology of MERS-CoV in dromedary camels in Ethiopia were investigated during 2017-2020. Of 1766 nasal swab samples collected, 61 (3.5%) were detected positive for MERS-CoV RNA. Of 484 turbinate swab samples collected, 10 (2.1%) were detected positive for MERS-CoV RNA. Twenty-five whole genome sequences were obtained from these MERS-CoV positive samples. Phylogenetically, these Ethiopian camel-originated MERS-CoV belonged to clade C2, clustering with other East African camel strains. Virus sequences from camel herds clustered geographically while in an abattoir, two distinct phylogenetic clusters of MERS-CoVs were observed in two sequential sampling collections, which indicates the greater genetic diversity of MERS-CoV in abattoirs. In contrast to clade A and B viruses from the Arabian Peninsula, clade C camel-originated MERS-CoV from Ethiopia had various nucleotide insertions and deletions in non-structural gene nsp3, accessory genes ORF3 and ORF5 and structural gene N. This study demonstrates the genetic instability of MERS-CoV in dromedaries in East Africa, which indicates that the virus is still actively adapting to its camel host. The impact of the observed nucleotide insertions and deletions on virus evolution, viral fitness, and zoonotic potential deserves further study.


Asunto(s)
Infecciones por Coronavirus , Coronavirus del Síndrome Respiratorio de Oriente Medio , Animales , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Camelus , Filogenia , Etiopía/epidemiología , Epidemiología Molecular , Viaje , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/veterinaria , Zoonosis/epidemiología , Variación Genética , ARN
3.
International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases ; 2022.
Artículo en Inglés | EuropePMC | ID: covidwho-2147441

RESUMEN

Background Four seasonal coronaviruses, including HCoV-229E and HCoV-OC43, HCoV-NL63 and HCoV-HKU1 cause approximately 15–30% of common colds in adults. However, the full landscape of the immune trajectory to these viruses that covers the whole childhood period are still not well understood. Methods We evaluated the serological responses against the four seasonal coronaviruses in 1886 children who aged under 18-year-old by using Enzyme-linked immunosorbent assay (ELISA). The O.D values against each human coronavirus were determined from each sample. Generalized addictive models (GAM) were constructed to determine the relationship between the age and seroprevalence throughout the whole childhood period. The specific antibody levels against the four seasonal coronaviruses were also tested from the plasma samples of 485 pairs postpartum women and their newborn babies. Results The IgG levels of the four seasonal coronaviruses in mother and the newborn babies were highly correlated (229E: r=0.63;OC43: r=0.65;NL63: r=0.69;HKU1: r=0.63). The seroprevalences in children showed a similar trajectory that the levels of IgG in the neonates dropped significantly and reached to the lowest level after the age of around 1 year (229E: 1.18 years;OC43: 0.97 years;NL63: 1.01 years;HKU1: 1.02 years) and then resurgence in the children who aged older than 1 year old. Using the lowest level from the GAMs as our cutoff, the seroprevalences for HCoV-229E, HCoV-OC43, HCoV-NL63 and HCoV-HKU1 were 98.11%, 96.23%, 96.23% and 94.34% at the age of 16-18 years. Conclusion Mothers share HCoV-specific IgGs with their newborn babies and the level of maternal IgGs waned at around one year after birth. Resurgence of the HCoV-specific IgGs were found thereafter with the increase of the age suggesting repeated infection occurred in children.

4.
Viruses ; 14(7)2022 06 24.
Artículo en Inglés | MEDLINE | ID: covidwho-1911652

RESUMEN

Antigenic imprinting, which describes the bias of the antibody response due to previous immune history, can influence vaccine effectiveness. While this phenomenon has been reported for viruses such as influenza, there is little understanding of how prior immune history affects the antibody response to SARS-CoV-2. This study provides evidence for antigenic imprinting through immunization with two Sarbecoviruses, the subgenus that includes SARS-CoV-2. Mice were immunized subsequently with two antigenically distinct Sarbecovirus strains, namely SARS-CoV-1 and SARS-CoV-2. We found that sequential heterologous immunization induced cross-reactive binding antibodies for both viruses and delayed the emergence of neutralizing antibody responses against the booster strain. Our results provide fundamental knowledge about the immune response to Sarbecovirus and important insights into the development of pan-sarbecovirus vaccines and guiding therapeutic interventions.


Asunto(s)
Anticuerpos Neutralizantes , COVID-19 , Animales , Anticuerpos Antivirales , Formación de Anticuerpos , COVID-19/prevención & control , Inmunización , Ratones , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
5.
Eur J Immunol ; 51(9): 2296-2305, 2021 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1258058

RESUMEN

The increasing numbers of infected cases of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses serious threats to public health and the global economy. Most SARS-CoV-2 neutralizing antibodies target the receptor binding domain (RBD) and some the N-terminal domain (NTD) of the spike protein, which is the major antigen of SARS-CoV-2. While the antibody response to RBD has been extensively characterized, the antigenicity and immunogenicity of the NTD protein are less well studied. Using 227 plasma samples from COVID-19 patients, we showed that SARS-CoV-2 NTD-specific antibodies could be induced during infection. As compared to the results of SARS-CoV-2 RBD, the serological response of SARS-CoV-2 NTD is less cross-reactive with SARS-CoV, a pandemic strain that was identified in 2003. Furthermore, neutralizing antibodies are rarely elicited in a mice model when NTD is used as an immunogen. We subsequently demonstrate that NTD has an altered antigenicity when expressed alone. Overall, our results suggest that while NTD offers a supplementary strategy for serology testing, it may not be suitable as an immunogen for vaccine development.


Asunto(s)
COVID-19/inmunología , Dominios Proteicos/inmunología , SARS-CoV-2/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Línea Celular , Chlorocebus aethiops , Reacciones Cruzadas/inmunología , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Pandemias/prevención & control , Unión Proteica/inmunología , Células Sf9 , Células Vero
6.
Emerg Infect Dis ; 26(1): 173-176, 2020 01.
Artículo en Inglés | MEDLINE | ID: covidwho-966221

RESUMEN

We examined nasal swabs and serum samples acquired from dromedary camels in Nigeria and Ethiopia during 2015-2017 for evidence of influenza virus infection. We detected antibodies against influenza A(H1N1) and A(H3N2) viruses and isolated an influenza A(H1N1)pdm09-like virus from a camel in Nigeria. Influenza surveillance in dromedary camels is needed.


Asunto(s)
Camelus/virología , Virus de la Influenza A , Infecciones por Orthomyxoviridae/veterinaria , Animales , Etiopía/epidemiología , Subtipo H1N1 del Virus de la Influenza A , Subtipo H3N2 del Virus de la Influenza A , Nigeria/epidemiología , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/virología
7.
Cell Rep ; 31(9): 107725, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: covidwho-276452

RESUMEN

The World Health Organization has declared the ongoing outbreak of COVID-19, which is caused by a novel coronavirus SARS-CoV-2, a pandemic. There is currently a lack of knowledge about the antibody response elicited from SARS-CoV-2 infection. One major immunological question concerns antigenic differences between SARS-CoV-2 and SARS-CoV. We address this question by analyzing plasma from patients infected by SARS-CoV-2 or SARS-CoV and from infected or immunized mice. Our results show that, although cross-reactivity in antibody binding to the spike protein is common, cross-neutralization of the live viruses may be rare, indicating the presence of a non-neutralizing antibody response to conserved epitopes in the spike. Whether such low or non-neutralizing antibody response leads to antibody-dependent disease enhancement needs to be addressed in the future. Overall, this study not only addresses a fundamental question regarding antigenicity differences between SARS-CoV-2 and SARS-CoV but also has implications for immunogen design and vaccine development.


Asunto(s)
Formación de Anticuerpos , COVID-19/inmunología , Reacciones Cruzadas , SARS-CoV-2 , Síndrome Respiratorio Agudo Grave/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Antígenos/inmunología , COVID-19/sangre , COVID-19/virología , Prueba Serológica para COVID-19 , Chlorocebus aethiops , Epítopos/inmunología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Pruebas de Neutralización , Unión Proteica , Dominios Proteicos , Síndrome Respiratorio Agudo Grave/sangre , Síndrome Respiratorio Agudo Grave/virología , Células Sf9 , Glicoproteína de la Espiga del Coronavirus/inmunología , Células Vero
8.
Science ; 368(6491): 630-633, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: covidwho-31567

RESUMEN

The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) has now become a pandemic, but there is currently very little understanding of the antigenicity of the virus. We therefore determined the crystal structure of CR3022, a neutralizing antibody previously isolated from a convalescent SARS patient, in complex with the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) protein at 3.1-angstrom resolution. CR3022 targets a highly conserved epitope, distal from the receptor binding site, that enables cross-reactive binding between SARS-CoV-2 and SARS-CoV. Structural modeling further demonstrates that the binding epitope can only be accessed by CR3022 when at least two RBDs on the trimeric S protein are in the "up" conformation and slightly rotated. These results provide molecular insights into antibody recognition of SARS-CoV-2.


Asunto(s)
Betacoronavirus/química , Betacoronavirus/inmunología , Epítopos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Secuencia de Aminoácidos , Enzima Convertidora de Angiotensina 2 , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/química , Anticuerpos Antivirales/inmunología , Afinidad de Anticuerpos , Antígenos Virales/química , Antígenos Virales/inmunología , Sitios de Unión , Reacciones Cruzadas , Cristalografía por Rayos X , Epítopos/química , Epítopos/inmunología , Modelos Moleculares , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/metabolismo , Conformación Proteica , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas/inmunología , Receptores de Coronavirus , Receptores Virales/química , Receptores Virales/metabolismo , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA